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In this paper a new sequential method for l-dimensional t-wo-phase black-oil reservior 
simulation is presented. The model includes compressibility and mass transfer between phases. 
Tke method decouples the system of equations into a parabolic equation and a hyperbolic 
system. One-dimensional numerical examples are presented using both first- and second-order 
Godunov discretizations for the hyperbolic part of the system. The results are compared to a 
fully implicit method using upwind differences. The second-order Godunov method shows 
dramatic improvement over those obtained with the more dispersive first-order methods. 
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1. INl'KOLXJCTlON 

A fundamental issue in numerical reservoir simulation is the choice of a basic 
computational strategy. One school advocates fully implicit discretizations in 
the governing equations are all solved simultaneously using a temparally i 
discretization scheme; the other advocates sequential metho s (such as IMPES) in 
which the system of equations is decoupled (“split”) and each equation is advanced 
separately as part of an overall timestep procedure. The trade-off between the two 
approaches that is usually cited is the “stability’ and “robustness” of implicit 
methods versus the reduced computational cost of sequential procedures. (See 
[I, 21 and the references therein for some discussion of these issues.) 

Given either basic strategy, a central concern in the construction of com- 
putational methods is the control of numerical dissipation. Standard upstream 
weighting schemes inherently use large amounts of numerical dispersion that cause 
sharp fronts to be smeared over many grid blocks, and can also cause their shape to 
be wildly distorted [3]. Our primary goal is to develop discretization methods that 
substantially reduce these effects. For reasons discussed below, we feel that the 
sequential approach offers the most promise for achieving this objective. 

The equations of multiphase porous media flow are of indeterminate type. If we 
ignore effects such as capillary pressure and mixing, the equations exhibit both 
parabolic (nearly elliptic) character and hyperbolic character. Different types of 
numerical procedures are needed to effectively treat these different types of 
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equations. The sequential approach presents the opportunity to separate the hyper- 
bolic part from the parabolic part so that appropriate algorithms can be applied to 
each. (How this can be achieved within the fully implicit framework is much less 
clear.) In [4] we showed that for simple model problems numerical dispersion can 
be effectively controlled within a sequential formulation by using higher order 
Godunov methods for the hyperbolic part of the system. For these simple model 
problems the separation of the equations is clear. In this paper we present a 
splitting for the equations that describe two-phase, black-oil reservoir simulation. 
We show that the equations are decoupled into a parabolic equation and a tirst- 
order hyperbolic system. Application of higher order Godunov methods to the 
hyperbolic system leads to a dramatic reduction in the effects of numerical disper- 
sion for such problems. 

Background on Sequential Methods 

The basis for sequential methods in use today is the IMPES procedure (implicit 
pressure and explicit saturation) first proposed for two phase flow problems by 
Sheldon et al. [S] in 1959 and by Stone and Garder [6] in 1961. The idea is to 
combine the flow equations to obtain a pressure equation and a saturation 
equation. For each time step, the pressure equation is solved first with an implicit 
temporal discretization; then the saturation is updated explicitly. This approach 
was later extended to treat three phase systems by Breitenbach et al. [7] and Coats 
PI. 

An extension of this basic strategy to permit implicit (but decoupled) treatment 
of the saturation equations as well as the pressure equation was proposed by Mac- 
Donald and Coats [9] in 1970. Spillette et al. [lo] proposed a variation of this 
method, based on the Buckley-Leverett form of the flow equations, in which the 
pressure equation is used to compute the total velocity rather than the individual 
phase velocities. This splitting provides a more robust computational procedure 
that is free of the anomalies associated with earlier sequential methods. For two- 
phase incompressible flow, use of the total velocity successfully decouples the 
equations into elliptic and hyperbolic parts. 

Various authors have proposed extensions of the IMPES type discretizations to 
compositional modeling situations. (See literature discussion in [ll]). Acs et al. 
[12] in 1982 introduced a formulation that replaces the treatment of saturation 
equations by a mass balance equation for each component and uses a pressure 
equation based on a volume balance. A similar approach permitting implicit treat- 
ment of the saturation equations is discussed by Kendall et al. [13] and Watts 
c111. 
Mathematical Formulation of the Two-Phase, Black-Oil Model 

In this paper we treat two-phase, two-component flow with fluid properties given 
by the standard black-oil PVT model. For concreteness we take the two phases to 
be liquid and vapor, the two components to be oil and gas, and we allow gas to dis- 
solve in the liquid phase. We thus allow the vapor phase (if present) to contain only 
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the gas component, while the liquid phase may contain both the oil and gas co 
ponents. We first discuss the flow equations which combine mass conservation 
relations and Darcy’s law. Then we describe the thermodynamic equilibriu 
for the fluid system which specifies how the components are distributed between the 
phases. Finally, we introduce a matrix-vector notation for the governing equations 
that will greatly simplify the subsequent mathematical development. 

We assume that the reservoir is a homogeneous porous med~~rn of permea 
and porosity 9. We ignore rock compressibility and take CJJ = 4 for clari 

exposition. The reservoir is also assumed to have constant cross sectional area and 
to be horizontal so that gravitational effects can be ignored. In addition, transverse 
variation is ignored and l-dimensional flow is assumed. 

In defining the flow equations, we let n, and ng represent t e masses of oil and 
gas per unit volume in the reservoir. (Here, mass is measured i terms of volume at 
standard conditions. For a complete discussion of units as well as the ex 
functions used, see Appendix A.) We call no and ng the “~orn~o~e~t densities.” 
Then, for example, 

I n, dx 
n 

is the total mass of oil in the region Q. The equations that describe mass conser- 
vation for the oil and gas components (ignoring capillary pressure and mixing 
effects) are given by (see [I]) 

(l.lb) 

where v, and v, are the liquid and vapor phase velocities and sI and s, are the ase 
saturations. The quantities rz; and n; represent the mass per unit bulk volume gas 
in the liquid and vapor phases, respectively. (We are assuming that oil is present 
only in the liquid phase.) The phase velocities are given by 

where p is the pressure. The phase mobilities, 2, = Kk,,/pI and 2, = Kk,,/pL,, are 
defined in terms of the absolute reservoir permeability K, the liquid and vapss 
phase relative permeability functions k,, and k,,, and the phase viscosities pl and .ti,. 
We assume that the relative permeabihties are expressed as functions of the yapor 

saturation 3,. 
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To evaluate the flux terms in (1.1) it is necessary to determine the pressure, the 
phase saturations and viscosities, and to partition the gas component between the 
liquid and vapor phases. These terms are determined by the black-oil PVT 
(pressure-volume-temperature) properties. (Since the black-oil model assumes 
isothermal conditions, temperature effects are not actually considered.) Typically, 
the PVT properties determine the volume occupied by each phase, given the mass 
of each component and the pressure. However, by specifying the component den- 
sities, we give the mass of each component per unit volume. From this perspective, 
the PVT relationships impose a constraint on pressure and component densities; 
viz., the saturations must sum to one. Saturations are given functions of pressure 
and component density; hence, this constraint implicitly specifies p as a function of 
n, and ng. 

In the present setting, the first step is to determine which phases are present. The 
liquid phase is present if and only if izO # 0. If the liquid phase is present, then the 
gas component must be partitioned between the phases. The amount of gas in the 
liquid phase is determined by the dissolved gas ratio Rsl, which specifies the 
maximum allowable ratio of gas to oil in the liquid phase as a monotonically 
increasing function of pressure. Thus, the maximum component density of gas that 
the liquid phase can accommodate is given by R,,(p) no. If Rsrno < ylg then the 
liquid phase is said to be “saturated” and the component density of the gas in the 
liquid phase is 

n; = Rs,nO. 

The remainder of the gas component density is 

n; = ng - RslnO 

which forms the vapor phase. However, for sufficiently high pressure, RJcno 2 ng. In 
this case all of the available gas is dissolved in the liquid phase and the vapor phase 
is not present. The liquid phase is then said to be “undersaturated.” The minimum 
pressure at which the vapor is not present is known as the bubble point pressure pb, 
which is defined by 

Rd~b) no = ng. 

For pressures above pb, ni = ng = Rsl(pb) no. These relationships can be summarized 
by 

where 

RsdP~ Pb) = 

R,,(P) if P<Pb, 

RsdPb) if pap,. 
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er computing the distribution of the components into 
mi the properties of each phase, namely, its saturation a 
saturations are determined from “formulation volume factors” that specify the 
specific volume of the phase. In specifying the saturations in terms of formuE 
volume factors, recall that we will later force the saturations to sum to one. 

s a consistency requirement on p, n,, and ng. 
operties of the vapor phase are relatively sim 

where B,, the vapor phase formation volume factor, is a monotonically 
function of p. The vapor phase viscosity ,LL~ is a known (~onde~rea§i~ 
of p. 

The behaviour of the liquid phase is more complex because of mass transfer 
effects. For pressures below the bubble point, increases in pressure cause more gas 
to dissolve in the liquid phase and the phase swells. Above t 
pressure the liquid phase is assumed to be slightly compressible. 
described by 

where 
B,(P) if P<Pb, 

BdP> Pb) = BI(P~) 

’ + cb,(P - Pb) 

if p>p,. 

The viscosity of the liquid phase pr also depends on both p and pb. For sat 
conditions (p < pb), pLI is a decreasing function of p. For undersaturated conditions 
it is a function of both p and pb. 

As noted above, by specifying the PVT behavior in terms of component 
we specify both the mass and volume of the system. This specification 
pressure to satisfy the requirement that the saturations sum to one; 

B,(P)(n, - &(P, Pb) %I + &(p, Pb) % = I. (4.3) 

If we recall that pb is a function of n, and ng (i.e., pb = 
implicitly determines pressure as a function of component 

;l(ng/no)) then (1.3) 

that fluid volume decreases with increasing pressure, so that total flui 
pressibility is positive and (1.3) can be solved uniquely for p). 

To facilitate discussion in subsequent sections, we define a 
representing the black-oil model. If we let 

n0 
iZ= 0 and s,\ S= 

nP ii so 
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and let 
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B= 

and 

R= 

then the saturations can be written in terms of the component densities as 

s= BRpTn. (1.4) 

The equation of state (1.3) linking y1 and p can now be written 

1 =eTs=eTBRpTn (1.5) 

where e’= (1, 1). 
If we now use this notation, the flow equations (l.la) and (l.lb) reduce to 

where u is the vector of phase velocities given by (1.2). 

Outline of the Paper 
The flow equations given by (1.6) and the equation of state (1.5) form the system 

that we wish to treat. For incompressible fluids in the absence of mass transfer 
between phases (R = I), the system reduces to an elliptic pressure equation and a 
hyperbolic saturation equation. In order to apply Godunov methods for hyperbolic 
conservation laws to the more general case of compressible fluids with mass trans- 
fer, a similar splitting is required for (1.5), (1.6). In the next section we discuss in 
detail a new splitting of the system into a parabolic pressure equation and a lirst- 
order hyperbolic system. 

Analysis of the first order system is presented in Section 3. It shows that the 
system is hyperbolic and determines the linearized characteristic structure. In Sec- 
tion 4, the details of the numerical method are described. In particular, we apply 
first- and second-order methods of Godunov type to the system of component con- 
servation equations. In general, Godunov-type methods require approximate 
Riemann problem solutions. However, all wave speeds are positive for the hyper- 
bolic system obtained from the splitting; hence, the required part of the Riemann 
problem solution is trivial. In Section 5 we present three numerical examples that 
exploit this fact. We compare our results to those obtained with a fully implicit 
method. These results serve to validate the new sequential method and demonstrate 
that the second-order Godunov method is effective at controlling numerical disper- 
sion in this context. In Section 6 we present a summary and conclusions. 
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2. A NEW SEQUENTIAL FORMULATION 

In this section, we derive the new sequential formulation. We first discuss the 
requirements that we believe a sequential method should satisfy. These criteria 
suggest a new splitting that is similar to ideas in [ 11, 12, 133. 

Requirements for a Splitting of the Governing Equations 

There appears to be no theory that can be applied to deduce how to decouple 
systems differential equations such as (IS), (1.6). owever, it is possible to 
develop ign criteria that provide guidelines for such plitting. Since our overall 
goal is to reduce the effects of numerical dispersion in reservoir simulation, our 
foremost requirements are based on obtaining a splitting so that part of the system 
is amenable to minimally dispersive methods, such as higher-order Godunov 
metbods. However, these requirements alone do not sufficiently restrict t 
of candidate splittings; we therefore also employ some heuristics based on the 
behavior of modei problems. 

The conditions required by Godunov methods are straightforward. Th 
the system to which they are applied must be in conservation Baw for 
sequently we take component densities for the primary dependent variables rather 
than saturations. Thus we want to consider splittings that yiel 
fOSTlTl 

an ai -4 = o 
at+-- ax (2.1) 

for some continuous, piecewise differentiable function P’. A~ditiona~ly~ to be well- 
posed, (2. I ) must be hyperbolic. 

Aside from this mathematical requirement, we also wish to i 
additional heuristic criteria. The first such criterion concerns what 
incompressible flow without mass transfer, i.e., when B is independent of p and 
R,, z 0. For this case, the flow is described by a single hyperbolic equation, viz., the 
Buckley-Leverett equation. The Buckley-Leverett equation has no explicit depen- 
dence on pressure; incompressibility directly specifies the total velocity (sum of the 
phase velocities) in terms of boundary conditions (The associated “‘press 
equation,” which plays no role in the numerical solution, can be integra 
analytically because of the incompressibility ass ur first heuristic 
requirement, then, is that for two-phase, incompress the hyperbolic part of 
our split equations be equivalent to the Buckley-Le 

Our second criterion concerns the case of undersaturated flow (when the vapor 
phase is absent). In this case, the black-oil equations describe two-camp 
single-phase flow and the situation is analogous to the compressible miscib 
placement equation [14, 151. Here we expect that, given the velocity fief 
oil-gas mixture is passively advected. Our second heuristic criterion therefore is 
that the component conservation equations reduce, in the undersaturated case, to 
linear advection. 
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The final criterion that we want to impose on the decoupling of the equations is 
based on the observation that for two-component, incompressible problems (both 
one and two phase) no information from the hyperbolic part of the equations 
propagates upstream in the absence of gravity. We postulate that a similar property 
is also true for the more general situation discussed in this paper. The success of the 
upstream weighting method tends to support this hypothesis. Thus, our third 
criterion is that the characteristic speeds of the hyperbolic part (defined in Sec- 
tion 3) all be positive in the absence of gravity. 

The New Splitting of the Governing Equations 

To ensure that the split system reduces to Buckley-Leverett for incompressible 
flow with no mass transfer, we recast the phase velocities in terms of a total velocity 
times fractional flow terms. This computation is detailed in Peaceman [ 11; we 
review it here for completeness. The total velocity is defined to be the sum of the 
phase velocities; i.e., 

T 
v,=e v. 

To express the phase velocities in terms of the total velocity we use Darcy’s law 
(1.2) to express the pressure gradient in terms of the total velocity. This gives 

aP v,= -A*- ax 

where 1, = A, + A, is the total mobility. If we solve 
result into (1.2) we obtain 

v=v,f 

(2.2) 

(2.2) for ap/dx and substitute the 

(2.3) 

where the fractional flows f are given by 

When (2.3) is substituted into (1.6) we obtain 

This is the form of the component conservation equations that we use in our 
sequential method. 

Our pressure equation is determined in exactly the same manner as Acs et al. 
[ 121 and Watts [ 111. In particular, the pressure equation is the time derivative of 
the equation of state (1.5) given by 

dR-‘B ap n’----e-+ aR-'B 
ap at 

eTBRpT+nT-e- 
aPb 

(2.5) 
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If we now replace an/at in (2.5) using (1.6) with the phase velocities defined 
we obtain the desired pressure equation 

+ eTBReT+nT- 
i 

At this point, we have a split method, composed of Eqs. (2.4) and (2.6) t 
the same as that of Acs et al. except that we use a total velocity representat 
(2.4) for the phase velocities, It is also similar to the splitting discussed by 
[ll] except that that method splits the solution of (2.4) into a saturation com- 
putation and a component transport computation. Wowever, our method is based 
on a different interpretation of the equations given by (2.4) and (2.6). 

Although it seems quite natural to solve (2.6) for p and then advance n; it is 
important to note that these quantities are not independent; they are coupled 
through the equation of state (1.5). The above cite works disregard this depen- 
dence in (2.4) and use a “volume balance” to ob in a correction term to the 
pressure equation (2.6) that causes the equation of state to be a~~rox~~a~ely 
satisfied. Our approach is to maintain this dependence by viewing p as a function of 
n for solution of the component conversation equations (2.4). The sole purpose of 
the “pressure equation” (2.6) is to compute the total velocity using (2.2); pressure is 
not determined by the pressure equation. Our splitting thus mists of two steps: 
(i) solving (2.6) f or a provisional value of p, which is only us to compute Ye from 
(2.2) and (ii) solving (2.4), where the pressure p depends on n. 

In the next section we perform a characteristic analysis of the component conser- 
vation equations (2.4), which constitute a system of nonlinear conservation laws. 
This analysis allows us to verify the conditions we im ost 
notably we show that (2.4) is hyperbolic. 

However, the behavior of (2.4) for two-phase, incompressible flow can be easily 
seen. For this case R is the identity matrix and B is a constant matrix such that 

s=Bn 

and U, is constant, thereby reducing (2.4) to 

an aB- lfi 
dt+ 

2x0. 
ax 

If we premultiply this equation by B, we obtain the uckley-leverett e 
each saturation‘ 

581/65/l-6 
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3. CHARACTERISTIC ANALYSIS FOR THE COMPONENT CONSERVATION EQUATIONS 

In this section we perform a characteristic analysis of the component conser- 
vation equations (2.4). If we maintain the dependencies of pressure and saturation 
on y1 then the system can be written in the form 

an am, X) = o 
at+- ax 

where the spatial dependence on F is through the total velocity 0, which is assumed 
known for the solution of (2.4). For the characteristic analysis, we ignore the 
explicit spatial dependence, setting U, = CI where a is a constant. Then the com- 
ponent conservation equations are of the form 

an a94=, at+- ax 

where 

F(n) = RTB-‘fol. (3.1) 

To study the characteristic behavior of systems of the form (3.1) it is necessary to 
rewrite the system in quasilinear form; i.e., 

where A(n) = DF((n), the Jacobian of F with respect to n. The system is hyperbolic if 
A has real eigenvalues for all values of IZ. (The interested reader is referred to [16] 
for a detailed discussion of characteristic analysis.) 

Thus, the objective of this section is to compute A, show that it has real eigen- 
values, and determine the associated eigenvectors. (The eigenvectors play an impor- 
tant role in defining the higher order Godunov method presented in Section 4.) 
Because of the dependencies in the black-oil model, it is convenient to treat the 
saturated and undersaturated cases separately. The section concludes with a 
demonstration that the equations satisfy our requirements for a sequential method, 
and with a discussion of the behavior of the system near the bubble point. 

Before presenting the analysis, we need to introduce some notation for differen- 
tiation. For two vectors, U, u (either one possibly of lenght 1) we denote by 

au 

the matrix of partial derivatives dui/avj, where i and j are the row and column 
indices, respectively. 
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Characteristic Analysis for the Saturated Case 

fore developing the quasilinear form for saturated flow 
re w the dependencies of the terms in (3.1). In this case, bot 
mation volume factors and the matrix R of ratios depend 
phase viscosities ,u., and p1 also depend only on pressure. The mobilities used in 
defining f depend on phase viscosities which are functions of p and saturation, an 
on relative permeabilities that depend on saturation. The saturations are given in 
terms of p and IZ by (1.4). 

If we use these dependencies, we find that 

(3.31) 

To evaluate the terms in (3.3) we need to compute 8p/dn and as/an + 
(&r/+)(+/&z). The derivative of pressure with respect to component density is 
obtain by computing the total derivative of the equation of state (1.5) with respect 
to n. This leads to 

aR-93 ap 
O=eTBRPT+nT-----e-. ap apz 

We define the “partial compressibility matrix” 

where the second equality is obtained by differentiating (B -y(RTB-“) = I with 
respect to p. Then we can solve for the partial derivatives of p to get 

(The analysis for the incompressible case must be treated differently, but it is quite 
easy.) It is now easy to compute the derivatives of the saturations from (1.4): 

e remark that C is the vector of phase compressibilities, so that eTCs is the total 

ap %=$&e’BR-? 

as as ap 
r 

Cse T 
an+--= I-- ap an eTCs 

BKT. (3.6) 

fluid compressibility which is assumed to be positive. 
If we use the relationships (3.4)-(3.6), (3.3) then becomes 

A(n) = RTB-‘HB (3.7) 
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We can now compute the eigenvalues and eigenvectors of A. Note that because of 
the similarity transformation in (3.7), the eigenvalues of A are equal to the eigen- 
values of H. Also note that the similarity transformation can be used to compute 
the eigenvectors of A from the eigenvectors of H. Thus it suffices to find the eigen- 
values and eigenvectors of H. We compute left eigenvectors rather then right eigen- 
vectors because they are easier to find. 

We first note the fractional flow terms in f sum to one. It then follows that 
e’f = 1; hence, 

eTf=O 
ap ’ 

eS!LO 
as . 

This says that the first eigenvalue is 

eTCfa 
r1= eTCs 

(3.9) 

and the first left eigenvector of H is e T. Clearly vi is real, in fact it is a com- 
pressibility weighted average of the phase velocities divided by a compressibility 
weighted average of the saturations. Hence the second eigenvalue of H must also be 
real and the component conservation equations are hyperbolic in the saturated 
case. 

To lind the we consider the eigenvalues and eigenvectors of 

af 
“as’ (3.10) 

First, eT is one left eigenvector with eigenvalue zero. However, since the phase 
velocities depend on saturation the other eigenvalue of (3.10) is not identically zero. 
If we recall that the mobilities are expressed solely as functions of s,, it follows that 
df/ds, is zero. From this observation it is easy to see that the nonzero eigenvalue of 
(3.10) is given by 

(3.11) 

with corresponding left eigenvector yT = (0, 1). 
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We now return to the task of finding the second eigenvalue and eigenvector of 
e note that for any scalar y we have 

(y-ye)TH=qyT+ ‘yT 
i L 

- yeTCfis) &e’. (3.12) 
Y 

y the proper choice of y, we can obtain a left eigenvector (u - ey)T of 
eigenvalue 

In particular, y must satisfy 

Q2=V. (3.13) 

YT 
i 

C(fr-sQ)+“.s 

Y= 
ap I 

e”G(fa - sy) ’ 

At this point, we have found all the eigenvalues of H, and all the eigen~ectors 
provided that the scalar y given by Eq. (3.14) is finite. 

The eigenvalues of A in the saturated region are unchanged by the similarity 
transformation; consequently, they are given by (3.9) and (3.11). To obtain the 
eigenvectors E,, I, we multiply by R-lB which gives 

ll =eTBRpT and I,=(y--ye)‘BR-’ 

where y is defined by (3.14). For the discussion of higher order Godunov methods 
in the following section it is helpful to have the right eigenvectors rl, r2 as well. 
These are obtained by forming the inverse of the matrix of left eigenvectors; i.e., 

The left and right eigenvectors defined in this manner are biortho~ormaI~ i.e., 
lirj = 6,. 

It is important to note that A may have an eigenvector deficiency. Specifica 
whenever 

eTC(fi-sq)= 

the two eigenvalues q1 and q2 are equal. In addition, the scalar y given by (3.1 
undefined, and the second eigenvector does not exist. At such a point, the corn-. 
ponent conservation equations are not “strictly hyperbolic” [ 17 1. 

This completes the characteristic analysis for the saturated case. We know that 
the eigenvalues are real, implying that the system (3.1) or (3.2) is by 
However, they are not necessarily distinct. We also know that an eigenvectos 
deficiency occurs whenever the eigenvalues are equal. In addition, the system is not 
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genuinely nonlinear (see Lax [17]). Hyperbolic systems that exhibit these types of 
behavior have been studied in the literature (see [ 18, 191); but, the theory is insuf- 
ficient to fully assess their impact. 

Characteristic Analysis for Undersaturated Flow 

Formally, the characteristic analysis for undersaturated flow is complicated by 
the additional dependence of the flux on the bubble point pressure. Nevertheless, 
direct computation of A from (2.4) does show that A = Ia; that is, the system 
reduces to linear advection. 

However, this relationship can be derived more easily by closer examination of 
the form of the flux when the vapor phase is missing. In that case, &no = ng and 
Blrz, = 1. Furthermore, only the liquid phase is mobile, having phase velocity equal 
to the total velocity, so that 

Thus the component flux vector P(n) is 

(3.15) 

Thus, undersaturated flow with our sequential formulation corresponds to linear 
advection. 

Discussion of the Characteristic Analysis 

The characteristic analysis given above shows that the component conservation 
equations (2.4) form a hyperbolic system. In addition both eigenvalues of A are CI 
for undersaturated flow so that the system reduces to linear advection in this case. 
This verifies two of the conditions we require of a sequential method. Recall that 

eTCf 
T/1=Ci- 

e TCs 

and 

From standard Buckley-Leverett theory we know that q2 > 0. The other eigenvalue, 
vi, is also nonnegative, because the requirement that total fluid compressibility be 
nonnegative for all possible saturations forces the entries of eTC to be nonnegative. 
Thus both wave speeds are nonnegative for the hyperbolic system associated with 
our decoupling of the system. Consequently, the splitting proposed in Section 2 
satisfies the desired properties. 

It is interesting to note the behavior of the eigenvalues in the saturated regime as 
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oint composition is approached and the vapor 
approaches CI, since in the limit both the phase v 

the saturation vector have zero entries in their vapor components. 
hand, eigenvalue q2 will generally approach zero, since the chara 
the relative permeability curves forces the mobility derivatives to zero at zero vapor 
saturation. Thus, we normally have a jump in the second eig value at the phase 

ary, corresponding to a discontinuous derivative of the 

4. NUMERICAL METHOD 

In this section we present a numerical method based on the splitting developed in 
the previous sections. Essentially, the algorithm is a two step process in whit 
first solve the “pressure” equation (2.6) to obtain the total velocity for the com- 
ponent conservation equations. We then advance the component co~~ervati~~ 
equations (2.4) using a Godunov discretization procedure. The time step selection 
algorithm is based solely on Courant-Friedrichs-Lewy (CFL) considerat 
the component conservation equations. This introduces some complication 
method as will be explained later. 

The discretization is based on a block centered grid system. e specify the gri 
by giving the grid block interfaces which we denote by 

... <xj~1/2<xj+1/2< ... 

We let grid block Bj be the block bounded by xi- 1,2 and xj+ 1,2 of length Ax = 
;rJ-+ l/2- xj- 112. (For simplicity, we restrict the presentation here to uniform grids; 
the extension to nonuniform grids is straightforward.) The timestep selection 
algorithm presented later is used to determine At” = tm+ ’ - tm. For each grid block 
B1 we define a vector of component densities n and time tm which we denote 
Thus, ny provides a piecewise constant approximation to n at time tm. 
we associate a value of pressure p,” defined by the equation of state. 

The overall computational procedure is straightforward except for complexities 
introduced by the time step selection. We tirst describe the discretization of t 
pressure equation and the component conservation equations separately. Then we 
discuss how these separate steps in the sequential procedure are linked throu 
time step selection. 

Disscretization of the Pressure Equation 

The pressure equation is discretized using standard difference approximations. 
particular, we use a centered spatial difference and a backward time ~iffere~~~. 
symbolically, the pressure equation (2.6) is of the form 
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In the present implementation we simply freeze the coefficients a, b, c at the current 
time level. The pressure equation is then approximated by 

Here, the coefficients at the grid block interfaces are obtained by arithmetic 
averaging, i.e., 

cj” 1,2 = ;( ci” + ci”+ 1 ). 

For the numerical examples in the next section we need to specify Dirichlet boun- 
dary conditions for the pressure equation. Appropriate discretization of these boun- 
dary conditions are derived from the variational formulation of block-centered dif- 
ference methods (see [20] ). Basically, the boundary condition is assumed to hold at 
the block interfaces at the edge of the grid. Thus, for example, ifj= 1 corresponds 
to the left boundary of the grid; then the term (jjy+ l -j;; + ‘) in the difference 
equations is replaced by 

where p;” + p is the specified boundary value. 
The solution of the above difference equation entails the solution of one 

tridiagonal linear system per time step. (We again emphasize that the predicted 
pressure py + 1 obtained by solving (2.6) does not become the value of pi” + l. The 
value of pi m + ’ is that value of p satisfying (1.5) with y1= nJ? + 1 .) The total velocity 
0, the Component Conservation Equations 

In this section we discuss the discretization of the component conservation 
equations (2.4). As shown in Section 3, these equations form a system of hyperbolic 
conservation laws. We consider discretization methods of Godunov type for this 
system. The simplest scheme in this family is the standard first-order Godunov 
scheme originally proposed by Godunov [21]. This scheme is based on an integral 
formulation of the equations and is designed to work well when the solution con- 
tains discontinuities (shock waves). Furthermore, it directly incorporates the non- 
linear wave structure of the conservation laws into the solution algorithm by solv- 
ing “Riemann problems.” Unfortunately, the first-order scheme contains a large 
dose of numerical dissipation (comparable to that of upwind differencing) and 
therefore smears discontinuities over several grid blocks. 

Several “second-order” variants of Godunov’s original procedure have been 
developed in an effort to reduce the smearing of fronts (see [22] and references 
therein). These second-order methods are based on piecewise discontinuous linear 
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approximations of the solution. Additionally, they incorporate “monotonicity con- 
staints” that effectively add dissipation near fronts and ensure that oscillations and 

on-entropy-satisfying discontinuities (see [23 ] ) are not generated. These methods 
generally reduce the smearing of fronts by about a factor of two, and can be v 
effective in preserving the integrity of a propagating bank that woul 
diffused away by numerical dispersion. 

We note that the “first-order” and “second-order” Go umv methods only 
achieve their advertized formal orders of accuracy an smooth flow regions. Near 
shocks, where the true solution is discontinuous, the orders of accuracy achieved by 
the two methods are substantially lower. Nevertheless, we will continue to refer to 
them as the first- and second-order methods. 

A complete discussion of Godunov-type discretizations is beyond the scope 
this paper. A recent paper of Harten, Lax, and van Leer [23] provides an excehe 
survey of Godunov-type schemes for systems Here, we proceed by out~i~~~g a 
specific second-order scheme of Godunov type, and then recover the first-order 
scheme by a particular choice of parameters. 

The second-order scheme that we use is based on ideas originally proposed 
van Leer [24]. The particular form of the scheme is taken from novella [25]. 
want to treat a two-equation system of the form 

(4.1) 

where v, is viewed as a known function of X. Basically, we use the quasilinear 
of the equation to compute left and right states (values of n) for each interfa 
Riemann problem solution (which trivializes in this case) given these left and n 
states is then used to compute the numerical flux used in a conservative 
scheme. 

To compute the left and right states for the flux computation we use the charac- 
teristics of the quasilinear form of (4.1) 

where A” = dF/dn is the Jacobian matrix. (The matrix A” is equal to the matrix A of 
Sect. 3 with a = 1.) Since the system is hyperbolic, 2 possesses real eigenvalues qk, 
and Ieft and right eigenvectors Zk, rk (k = 1,2), respectively (when ql # q2)~ The 
eigenvectors are normalized so that they are biorthonormal, i.e., li. rj = 6,. Since the 
right eigenvectors form a basis for R2, we can express any vector n in that basis as 

n= c akrk 
k=l 
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where ak = Zk. n. These right eigenvectors form a canonical basis for A”. In par- 
ticular, expressing a jump in state in this basis decomposes the jump into its 
separate wave components. 

We now review the second-order Godunov procedure from Collella [25] as 
applied to the component conservation equations. The scheme is actually a 5-step 
procedure; we first list the steps, and then consider each in more detail: 

1. Beginning with the piecewise constant approximation n;, compute “cen- 
tered,” “left,” and “right” slopes. 

2. “Limit” the slopes based on monotonicity criteria. This produces a 
piecewise discontinuous linear approximation to the solution at time P’. 

3. Trace characteristics to get left and right states (values of n) at grid block 
interfaces at time tm+ ‘I’. 

4. Solve the Riemann problem for (4.1) with these left and right states. 
5. Use a conservative difference approximation to (4.1) to produce a 

piecewise constant approximation to nr + ’ 

The objective of steps 1 and 2 is to construct a piecewise discontinuous linear 
approximation to the solution. Focusing our attention on grid block Bj, we begin 
with a piecewise constant approximation n? and compute the following undivided 
differences and their expansions in the right eigenvectors rk of A”(nJP): 

(4.3) 

nj”, 1 -n,?= 1 a,“rk. 
k=l 

The undivided differences computed in step 1 define slopes for the expansion 
coefficients ak. In step 2 we “limit” these slopes so that the procedure of con- 
structing the piecewise linear approximation does not introduce any new maxima 
or minima. The limited “slope” is given by 

(dn)j”= 1 akrk 
k=l 

where 

=o otherwise. 

(4.4) 

The purpose of step 3 characteristic tracing, is to predict, to second-order 
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accuracy, two values of n at each grid block interface at time P” ‘12. Gne value, 
n?+ l/2 IT 1/2,L, is associated with information that is arriving at the grid block interface at 
xj+ l/2 from the left. Analogously, nj+ 1,2 R m + U2 represents information arriving from the 
right. These values provide the left and right states for the Riemann problem of step 
4. Since the derivation of the characteristic tracing is rather long, we simply give the 
result and refer the reader to [25] for details. The computation 1n grid 
provides a left state for interface xi+ 1,2 and a right state for interface X, _ i,Z. The left 
state at xi+ 1,2 is given by 

-~F(n~)(v~,j+l,*-v~,j+1:2) (4.5) 

where ak are the coefficients of the limited slope from (4.4), an qf = max(r,: 0). 
Analogously, the right state at x,-,,, is given by 

where qf = min( qk, 0). 
Having the left and right states nj+ 1,2,L m + II2 and n,“,lj12R at each interface xj+ 1,2, step 

4 is to solve the Riemann problem for (4.1) with these states. This step resolves the 
nonlinear interaction of the two states. The resulting state from the iemann 
problem solution that propagates with zero velocity provides a value of ~/m,:$~ at 
each interface, which is then used in the conserative differencing step. As shown rn 
Section 3, both of the eigenvalues qr, q2 are nonnegative. It follows that the 

iemann problem solution is always the upstream state. Thus, if the total velocity 
C~$plf2 is positive, the solution is always the left state nim,:,$. If the total velocity 
is negative, the solution is the right state. 

The fifth and final step is to use the states determined from the Riemann problem 
solutions in a conservative differencing of (4.1). Of course, this guarantees that mass 
will be conserved. The new piecewise constant approximation at time tm+ 1 is given 
bY 

The first-order Godunov method is easily recovered from the second-or 
scheme presented above by setting all of the slopes (An),” to zero. 1x1 this ease, there 
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is no need to perform steps 1 and 2; the left and right states for the Riemann 
problem of step 4 can be directly from (4.5) and (4.6) with a, = c(~ = 0. Note that 
the resulting first-order scheme still includes the correction for explicit spatial 
dependence of the flux in computation of the left and right states for the Riemann 
problem. The motivation here is pragmatic; namely, numerical experiments indicate 
that the performance of the method is somewhat improved by their inclusion. 

Time Step Control 

The solution of the pressure equation (2.6) and the component conservation 
equations (2.4) is linked through the time step selection. Ideally, the time step size 
should be based on some overall considerations of temporal accuracy involving the 
individual approximations of (2.6) and (2.4), and also on the “splitting error” 
introduced by the nonsimultaneous solution of the equations. Unfortunately, there 
is no theory to guide such a selection. We have postulated that the time step size 
can be chosen based only on requirements for solving the hyperbolic system (2.4). 
We know that the restrictions imposed by these requirements are, in general, 
necessary for stability and accuracy. However, we have observed in test com- 
putations that such a choice appears to lead to a conservative time step for the 
pressure equation (2.6). Indeed, any abrupt transient behavior in the pressure will 
lead to large total velocities, and thus to hyperbolic time steps of size 0(dx2); such 
steps are of the correct size for accurately capturing the transient behavior in the 
parabolic equation (2.6). 

The appropriate time step criterion for Godunov methods is the 
Courant-Friedrichs-Lewy condition 

u ,,,<l. 
AX (4.7) 

Here, urn,, is the maximum hyperbolic wave speed occuring in the Riemann 
problem solutions (see previous section) used to compute the flux term in (2.4). 
Since we do not actually solve the Riemann problems, we do not have a good 
estimate of u,,,. However, an upper bound is provided by taking the maximum 
total velocity at any grid block interface times the maximum value of the eigen- 
values q from Section 3 that can occur in the problem. We have, in fact, computed 
the largest eigenvalue that can occur for the given PVT and relative permeability 
data between 500 and 4500 psi and used this estimate for our numerical examples. 
(It would be possible to estimate the maximum local wave speeds. However, such a 
procedure would introduce unnecessary complication because the component con- 
servation equations are not genuinly nonlinear.) We are therefore usually operating 
at local CFL values considerably less than one. (The local CFL value is the value of 
the left side of (4.7) evaluated at a particular interface.) 

The CFL condition depends on the values of the total velocity that are computed 
by solving the pressure equation. However, we must know the new value of At 
before the pressure equation is solved to obtain the total velocity. To circumvent 
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this difficulty we first predict the size of the new timestep based on t 
the total velocity. The predicted At is then used to solve the pressu 
can then compute the new total velocity. The CFL condition is then used to check 
the stability of the predicted timestep. If it is stable, we complete the timestep by 
solving the component conservation equations. If it is not stable, we use the new 
total velocities to compute a new prediction of At and repeat the pressure equation 
solution. Typically, the first prediction of the timestep is stable; however, in more 
general circumstances than are considered here (such as in problems with variable 
injection rates) the initial prediction of the timestep could be too large and lea 
instabilities. 

We note that, while the time step selection algorithm is based on sound p 
for the hyperbolic part of the system, it does not directly incorporate any ac 
considerations for the solution of the pressure equation. However, the criteria 
indirectly respond to variations in the pressure equation through the depen 
CFL on the total velocity. Whether this approach is adequate in general is 
unknown. In addition, a robust procedure for accurately estimating local CFL 
values is needed to achieve best performance of the met 

5. NUMERICAL RESULTS 

In this section we present three numerical examples illustrating the performance 
of the new method using both the first- and second-order Godunov schemes for the 
hyperbolic part. The results are compared to results obtained with a stan 
implicit method using a time step selection strategy developed by Sammon and 
Rubin [26]. 

We will refer to the first-order Godunov method and the fully implicit method as 
“lower order methods” since they are formally first-order accurate. Analogously, the 
second-order Godunov method will be referred to as a ‘“higher order method.” 

s we have chosen are not intended to be typical of black-oil reservior 
ather, they have been designed to test the ability of the various 
oblems involving sharp fronts. The PVT properties and the relative 

permeability data are the same for all of the problems; these properties are give 
Appendix A. The physical setting of the three problems is the same. A reservoir 
feet in length with permeability 1 millidarcy and porosity 1 is assumed t 
initially filled with a mixture of oil and gas. The initial fluid distribution is taken to 
be uniform along the length of the reservoir. 

Fluid of given composition and pressure is injected at x = 0 and the flui 
in the reservoir is produced at a specified pressure at x = 100. (Composition and 
pressure are specified by prescribing the component densities and by using the 
equation of state.) The data is selected to guarantee flow from left to right for the 
entire computation. For each example we simulate the flow for 200 days on both a 
coarse and a tine grid. We present graphical comparisons for component densities 
and for the vapor saturation at the end of the simulation. (In these graphs, the x 
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FIG. 5.1. For Example 1, coarse grid (20 grid blocks): (a) vapor saturation; (b) oil component den- 
sity; (c) gas component density. 
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FIG. 5.1-Continued. 

axis is normalized to vary between 0 and 1.) For each problem, the numerical 
results are compared to a tine grid (1600 points) solution obtained using a variation 
of the second-order Godunov scheme that adds extra dissipation to ensure correct 
shock dynamics. Extensive numerical testing and comparison using the first-order 
methods indicated that the fine grid result for each problem represents a very good 
approximation to the exact solution of the equations. (Sharp resolution of the 
fronts could not be obtained at a reasonable cost with the fully implicit simu 
which contains no potential splitting error.) 

In addition to the graphical results, for each example we give a table showing the 
number of time steps taken by each method for the problem. The reader should not 
place too much emphasis on these tables. The timestep selection algorithm 
our method is still fairly crude. Furthermore, the work per timestep is cons 
different for the different methods. The fully implicit method uses an iterative 
scheme for each timestep that requires the formation of the Jacobian and ~urn~~i~a~ 
solution of a block tridiagonal matrix for several Newton iterates each time step, 
whereas the Godunov methods require only solution of a tridiagonal treasure 
equation and an explicit difference approximation to the conservation equations. 

EXAMPLE 1. The first example corresponds to the injection of gas into an oil- 
rich reservior. This example is an analog of the BuckleyyLeverett problem with 
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compressibility and mass transfer effects. The initial conditions for the reservoir are 
given by 

n, = 0.80 

ng = 60. 

The injected fluid is essentially all gas, given by 

n, = 0.0001 

ng = 120. 

This injection mixture is held constant for the simulation. The equation of state 
determines the pressure required to maintain the specified component densities. 
This value is used as a boundary condition for the pressure equation. The m-o 
tion pressure is 1000 psi; the component densities at the producer are dete~rn~~~~ 
by what flows out. (Actually, their values do not affect the computation.) 

In Figs. 5.lac we give computational results for the three methods tested, using 
20 grid blocks to discretize the reservoir. Refined grid computations using 40 grid 
blocks are shown in Figs. 5.2a-c. The following table shows the number of t 
steps required for each method for this example. 

581/65:1-7 



96 BELL, SHUBlN, AND TRANGENSTEIN 

5 
A 

FIRST OROER GODUNOV 
SECOND ORDER GODUNOV 
FULLY IMPLICIT 

.60 

501 
.oo .20 .40 .60 .80 1 .oo 

X 

FIG 5.3. For Example 2, coarse grid (40 grid blocks): (a) vapor saturation; (b) oil component den- 
sity; (c) gas component density. 
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FIG. 5.3-Continued. 

Timesteps for Example 1 

Method Coarse grid Fine grid 

Fully implicit 48 14 
First-order Godunov 21 52 
Second-order Godunov 27 52 

A number of observations can be made concerning these results. First, the s 
ing of the solution is worse for the fully implicit method than for the first 
Godunov method; in fact, it completely misses the undersaturated region on the 
coarse grid (Fig. 5.la). This is as expected because of the increased numerical dis- 
persion arising from the implicit temporal discretization. A 
resolution of the fronts is observed for the higher order method. It is interest 
note that for this example, all of the structure of the flow is inherently speei 
the vapor saturation. Careful examination of the results shows that the wave struc- 
tures in the component densities are directly mimicked by the vapor saturation. 

EXAMPLE 2. The more stringently test the various methods we next solve a 
problem in which the wave structure is not directly mimicked by the vapor 
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FIG. 5.4. For Example 2, tine grid (80 grid blocks): (a) vapor saturation; (b) oil component density; 
(c) gas component density. 
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FIG. 5.GContinued. 

saturation. In this example a two-phase mixture of high gas content is injected into 
a reservoir having somewhat higher oil content and reduced gas content. 
Specifically, the initial conditions for the reservoir are given by 

no = 0.80 

ng = 50. 

, containing considerably more gas, is given by 

no = 0.60 

ng = 126. 

Again, this injection mixture is held constant for the simulation. For this exam 
the production pressure is 800 psi. 

In Figs. 5.3a-c we present numerical results obtained for this problem on a coarse 
grid composed of 40 grid blocks. (We use twice as many grid blocks as in the 
previous example due to the increased amount of fine structure in the solution.) 
Figures 5.4a-c show relined grid computations using 80 grid blocks. The followin 
table shows the number of timesteps required for each method for the s&con 
example. 
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FIG. 5.5. For Example 3, coarse grid (20 grid blocks): (a) vapor saturation; (b) oil component den- 
sity; (c) gas component density. 
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FIG. 5.5-Continued. 
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Timesteps for Example 2 

Method Coarse grid Fine grid 

Fully implicit 162 230 
First-order Godunov 146 289 
Second-order Godunov 144 281 

As in the first example, the results using the low order methods behave as expec- 
ted. The fully implicit result is the most smeared. Note the “shock-rarefac 
shock” pattern located in the center of the reservoir, evident in the component 
sity plots, which is not reflected by the saturation behavior. This unusual 
wave pattern is quite difficult to resolve. Even with 80 grid blocks, the resohttmn 
using the lower order methods is quite poor. As before, the resolution obtaine 
the second-order Godunov method is dramatically improved. 

EXAMPLE 3. Gur final example again contains structure in the component den- 
sities that is not fully mimicked by the vapor saturation. In this example a single 
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phase mixture of oil and gas is injected into an essentially gas-filled reservoir. 
Specifically, the intial conditions for the reservoir are given by 

no = 0.001 

ng = 120. 

The injected fluid, which forms a single phase, is given by 

no = 0.80 

ng = 72. 

Again, this injection mixture is held constant for the simulation. For this example 
the production pressure is 1600 psi. This produces a large pressure drop across the 
reservoir, so that as the injected mixture flows through the reservoir the pressure 
drops below the bubble point pressure and gas begins to come sut of solution. 

In Figs. 5.5ax we present numerical results obtained for this problem cm a coarse 
grid (20 grid blocks). Figures 5.6a-c show refined grid computations using 40 grid 
blocks. The following table shows the number of timesteps required for each 
method for this example. 
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Timesteps for Example 3 

Method Coarse grid Fine grid 

Fully implicit 81 145 
First-order Godunov 14 144 
Second-order Godunov 15 147 

As in the second example, result obtained with the lower order methods are quite 
poor. In particular, there is a dramatic overshoot of the ylg component in the small 
wave that trails behind the main front. As before, the fully implicit result is the 
worst. The second-order Godunov scheme achieves a dramatic improvement 
although on the coarse grid the trailing wave is somewhat smeared. 

6. SUMMARY AND CONCLUSION 

We have presented a new sequential formulation for two-phase flow in porous 
media having PVT behavior specified by a black-oil model. We have shown that 
the equations governing the flow can be split into a pressure equation and a system 
of hyperbolic conservation laws. When a second-order Godunov method is used to 
integrate the hyperbolic conservation laws, substantial improvement in accuracy is 
observed. 

We have not addressed the question of multiple space dimensions since this issue 
is essentially independent of the sequential formulation. However, we note that the 
extension of Godunov-type methods to multidimensional problems has been 
addressed by a number of authors, e.g. [25,4]. 

Unfortunately, extension of the methodology presented here to more complex 
situations (such as those involving more components or gravitational effects) is by 
no means straightforward. The particular splitting discussed here allows pressure to 
depend on component density when advancing the component conservation 
equations. Such pressure dependence adds considerable complications to the 
characteristic analysis for more realistic fluid models. Furthermore, the 
approximate solution of Riemann problems, which plays a crucial role in the 
development of Godunov methods, becomes extremely difficult when gravitational 
effects are considered and countercurrent flow occurs. 
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APPENDIX A: UNITS AND FUNCTIONS 

Variable Units Function or value used 

P 
days 

(f%dft3 
WMft' 

psi 
0.006328 x (value in millidarcies) 

1 
1 

cP 

- 

satisfies (1.3) 
1 md 

(1 - 5”)2 
4 

(0.8 - 20m4min(p, pb)) 
x (1 + 6.78 x 10-5max(p - nh, 0)) 

0.012 + 3 x lo-‘p 
0.05p 

1+ 1om4p 
(6 + O.O6p)-’ 
2.31 x iO-5 
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